[A probabilistic model of cardiac electrical activity based on a cellular automata system].

نویسندگان

  • Felipe Alonso Atienza
  • Jesús Requena Carrión
  • Arcadi García Alberola
  • José L Rojo Alvarez
  • Juan J Sánchez Muñoz
  • Juan Martínez Sánchez
  • Mariano Valdés Chávarri
چکیده

INTRODUCTION AND OBJECTIVES Mathematical models of cardiac electrical activity may help to elucidate the electrophysiological mechanisms involved in the genesis of arrhythmias. The most realistic simulations are based on reaction-diffusion models and involve a considerable computational burden. The aim of this study was to develop a computer model of cardiac electrical activity able to simulate complex electrophysiological phenomena but free of the large computational demands required by other commonly used models. MATERIAL AND METHOD A cellular automata system was used to model the cardiac tissue. Each individual unit had several discrete states that changed according to simple rules as a function of the previous state and the state of the neighboring cells. Activation was considered as a probabilistic process and was adjusted using restitution curves. In contrast, repolarization was modeled as a deterministic phenomenon. Cell currents in the model were calculated with a prototypical action potential that allowed virtual monopolar and bipolar electrograms to be simulated at any point in space. RESULTS Reproducible flat activation fronts, propagation from a focal stimulus, and reentry processes that were stable and unstable in two dimensions (with their corresponding electrograms) were obtained. The model was particularly suitable for the simulation of the effects observed in curvilinear activation fronts. Fibrillatory conduction and stable rotors in two- and three-dimensional substrates were also obtained. CONCLUSIONS The probabilistic cellular automata model was simple to implement and was not associated with a high computational burden. It provided a realistic simulation of complex phenomena of interest in electrophysiology.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pattern Formation of the FitzHugh-Nagumo Model: Cellular Automata Approach

FitzHugh-Nagumo (FHN) model is a famous Reaction-Diffusion System which first introduced for the conduction of electrical impulses along a nerve fiber. This model is also considered as an abstract model for pattern formation. Here, we have used the Cellular Automata method to simulate the pattern formation of the FHN model. It is shown that the pattern of this model is very similar to those...

متن کامل

Edge Detection Based On Nearest Neighbor Linear Cellular Automata Rules and Fuzzy Rule Based System

 Edge Detection is an important task for sharpening the boundary of images to detect the region of interest. This paper applies a linear cellular automata rules and a Mamdani Fuzzy inference model for edge detection in both monochromatic and the RGB images. In the uniform cellular automata a transition matrix has been developed for edge detection. The Results have been compared to the ...

متن کامل

Edge Detection Based On Nearest Neighbor Linear Cellular Automata Rules and Fuzzy Rule Based System

 Edge Detection is an important task for sharpening the boundary of images to detect the region of interest. This paper applies a linear cellular automata rules and a Mamdani Fuzzy inference model for edge detection in both monochromatic and the RGB images. In the uniform cellular automata a transition matrix has been developed for edge detection. The Results have been compared to the ...

متن کامل

Novel Design of n-bit Controllable Inverter by Quantum-dot Cellular Automata

Application of quantum-dot is a promising technology for implementing digital systems at nano-scale.  Quantum-dot Cellular Automata (QCA) is a system with low power consumption and a potentially high density and regularity. Also, QCA supports the new devices with nanotechnology architecture. This technique works </...

متن کامل

A Probabilistic Three-Phase Time Domain Electric Arc Furnace Model based on analytical method

An electric arc furnace (EAF) is known as nonlinear and time variant load that causes power quality (PQ) problems such as, current, voltage and current harmonics, voltage flicker, frequency changes in power system. One of the most important problems to study the EAF behavior is the choice of a suitable model for this load. Hence, in this paper, a probabilistic three-phase model is proposed base...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Revista espanola de cardiologia

دوره 58 1  شماره 

صفحات  -

تاریخ انتشار 2005